validate response: {
"grader": {
"type": "python",
"source": "def _ep_eval(row, **kwargs):\n \"\"\"\n Example @evaluation_test that scores a row using rapidfuzz.WRatio and\n attaches an EvaluateResult.\n \"\"\"\n reference = row.ground_truth\n assistant_msgs = [m for m in row.messages if m.role == 'assistant']\n last_assistant_content = assistant_msgs[-1].content if assistant_msgs else ''\n prediction = last_assistant_content if isinstance(last_assistant_content, str) else ''\n from rapidfuzz import fuzz, utils\n score = float(fuzz.WRatio(str(prediction), str(reference), processor=utils.default_process) / 100.0)\n row.evaluation_result = EvaluateResult(score=score)\n return row\n\n\nfrom typing import Any, Dict\nfrom types import SimpleNamespace\n\n\nclass EvaluationRow(SimpleNamespace):\n \"\"\"Minimal duck-typed stand-in for an evaluation row.\n\n Extend this with whatever attributes your eval logic uses.\n \"\"\"\n pass\n\n\nclass EvaluateResult(SimpleNamespace):\n \"\"\"Simple stand-in for Eval Protocol's EvaluateResult.\n\n This lets evaluation-style functions that construct EvaluateResult(score=...)\n run inside the Python grader sandbox without importing eval_protocol.\n \"\"\"\n\n def __init__(self, score: float, **kwargs: Any) -> None:\n super().__init__(score=score, **kwargs)\n\n\nclass Message(SimpleNamespace):\n \"\"\"Duck-typed stand-in for eval_protocol.models.Message (role/content).\"\"\"\n pass\n\n\ndef _build_row(sample: Dict[str, Any], item: Dict[str, Any]) -> EvaluationRow:\n # Start from any item-provided messages (EP-style), defaulting to [].\n raw_messages = item.get(\"messages\") or []\n normalized_messages = []\n for m in raw_messages:\n if isinstance(m, dict):\n normalized_messages.append(\n Message(\n role=m.get(\"role\"),\n content=m.get(\"content\"),\n )\n )\n else:\n # Already Message-like; rely on duck typing (must have role/content)\n normalized_messages.append(m)\n\n reference = item.get(\"reference_answer\")\n prediction = sample.get(\"output_text\")\n\n # EP-style: ensure the model prediction is present as the last assistant message\n if prediction is not None:\n normalized_messages = list(normalized_messages) # shallow copy\n normalized_messages.append(Message(role=\"assistant\", content=prediction))\n\n return EvaluationRow(\n ground_truth=reference,\n messages=normalized_messages,\n item=item,\n sample=sample,\n )\n\n\ndef grade(sample: Dict[str, Any], item: Dict[str, Any]) -> float:\n row = _build_row(sample, item)\n result = _ep_eval(row=row)\n\n # Try to normalize different result shapes into a float score\n try:\n from collections.abc import Mapping\n\n if isinstance(result, (int, float)):\n return float(result)\n\n # EvaluateResult-like object with .score\n if hasattr(result, \"score\"):\n return float(result.score)\n\n # EvaluationRow-like object with .evaluation_result.score\n eval_res = getattr(result, \"evaluation_result\", None)\n if eval_res is not None:\n if isinstance(eval_res, Mapping):\n if \"score\" in eval_res:\n return float(eval_res[\"score\"])\n elif hasattr(eval_res, \"score\"):\n return float(eval_res.score)\n\n # Dict-like with score\n if isinstance(result, Mapping) and \"score\" in result:\n return float(result[\"score\"])\n except Exception:\n pass\n\n return 0.0\n",
"name": "grader-R5FhpA6BFQlo"
}
}
run response: {
"reward": 0.7555555555555555,
"metadata": {
"name": "grader-5XXSBZ9B1OJj",
"type": "python",
"errors": {
"formula_parse_error": false,
"sample_parse_error": false,
"sample_parse_error_details": null,
"truncated_observation_error": false,
"unresponsive_reward_error": false,
"invalid_variable_error": false,
"invalid_variable_error_details": null,
"other_error": false,
"python_grader_server_error": false,
"python_grader_server_error_type": null,
"python_grader_runtime_error": false,
"python_grader_runtime_error_details": null,
"model_grader_server_error": false,
"model_grader_refusal_error": false,
"model_grader_refusal_error_details": null,
"model_grader_parse_error": false,
"model_grader_parse_error_details": null,
"model_grader_exceeded_max_tokens_error": false,
"model_grader_server_error_details": null,
"endpoint_grader_internal_error": false,
"endpoint_grader_internal_error_details": null,
"endpoint_grader_server_error": false,
"endpoint_grader_server_error_details": null,
"endpoint_grader_safety_check_error": false
},
"execution_time": 6.831332206726074,
"scores": {},
"token_usage": null,
"sampled_model_name": null
},
"sub_rewards": {},
"model_grader_token_usage_per_model": {}
}